Imaging of atmospheric gravity waves in the stratosphere and upper mesosphere using satellite and groundbased observations over Australia during the TWPICE campaign

نویسندگان

  • J. H. Hecht
  • M. J. Alexander
  • R. L. Walterscheid
  • L. J. Gelinas
  • R. A. Vincent
  • A. D. MacKinnon
  • J. M. Woithe
  • P. T. May
  • W. R. Skinner
  • M. G. Mlynczak
  • Russell
چکیده

[1] During the Tropical Warm Pool International Cloud Experiment (TWPICE) an intense tropical low was situated between Darwin and Alice Springs, Australia. Observations made on 31 January 2006 by the Atmospheric Infrared Sounder instrument on the NASA Aqua satellite imaged the presence of atmospheric gravity waves (AGWs), at approximately 40 km altitude, with horizontal wavelengths between 200 and 400 km that were originating from the region of the storm. Airglow images obtained from Alice Springs (about 600 km from the center of the low) showed the presence of similar waves with observed periods of 1 to 2 h. The images also revealed the presence of 30to 45-km-horizontal-wavelength AGWs with shorter observed periods of near 15 to 25 min. Ray tracing calculations show that (1) some of the long wavelength waves traveled on rays, without ducting, to the altitudes where the observations were obtained, and (2) shorter-period waves rapidly reached 85 km altitude at a horizontal distance close to the storm, thus occurring over Alice Springs only if they were trapped or ducted. The mesospheric inversion layer seen in the measured temperature data almost forms such a trapped region. The winds therefore critically control the formation of the trapped region. Wind profiles deduced from the available data show the plausibility for the formation of such a trapped region. Variations in the wind, however, would make ideal trapped region conditions short-lived, and this may account for the sporadic nature of the short-period wave observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The atmospheric background situation in northern Scandinavia during January/February 2003 in the context of the MaCWAVE campaign

The atmosphere background wind field controls the propagation of gravity waves from the troposphere through the stratosphere into the mesosphere. During January 2003 the MaCWAVE campaign took place at Esrange, with the purpose of observing vertically ascending waves induced by orography. Temperature data from the U. Bonn lidar at Esrange (68 N/21 E) and the ALOMAR RMR lidar (69 N/16 E), wind da...

متن کامل

Driving of the SAO by gravity waves as observed from satellite

It is known that atmospheric dynamics in the tropical stratosphere have an influence on higher altitudes and latitudes as well as on surface weather and climate. In the tropics, the dynamics are governed by an interplay of the quasi-biennial oscillation (QBO) and semiannual oscillation (SAO) of the zonal wind. The QBO is dominant in the lower and middle stratosphere, and the SAO in the upper st...

متن کامل

Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In...

متن کامل

Gravity Waves and Ionospheric Irregularities over Tropical Convection Zones observed by GPS/MET Radio Occultation

GPS/MET observations of the tropical atmosphere of the southern hemisphere (5S to 25S) during February 1997 are analysed, when a high amount of convective tropospheric water vapor is at these latitudes. Enhanced gravity wave activity of the lower stratosphere at h=22-28 km is associated to areas of increased tropospheric water vapor pressure at h=4-6 km, regarded as a measure of tropical convec...

متن کامل

Quasi-biennial oscillation influence on long-period planetary waves in the Antarctic upper mesosphere

[1] Long-period planetary wave data derived from meteor wind observations recorded over a 12-year period with the SuperDARN radar at Halley, Antarctica, are presented and compared with the phase of the quasi-biennial oscillation (QBO) throughout the equatorial stratosphere. Enhanced planetary wave activity in the Antarctic upper mesosphere is found during the summer months, when the QBO in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009